Received 6 April 2005 Accepted 20 April 2005

Online 30 April 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrea Johnston,^a Alastair J. Florence^a* and Alan R. Kennedy^b

^aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ^bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: alastair.florence@strath.ac.uk

Key indicators

Single-crystal X-ray study T = 123 K Mean σ (C–C) = 0.002 Å R factor = 0.048 wR factor = 0.117 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Carbamazepine N,N-dimethylformamide solvate

In the title compound, $C_{15}H_{12}N_2O \cdot C_3H_7NO$, carbamazepine molecules form the $R_2^2(8) N - H \cdot \cdot \cdot O$ hydrogen-bonded dimer arrangement observed in the crystal structures of each of the four known anhydrous polymorphs. The molecules of *N*,*N*dimethylformamide are located between adjacent carbamazepine dimers and form an $N - H \cdot \cdot \cdot O$ hydrogen bond to the *anti*-oriented NH group of the carboxamide moiety of carbamazepine.

Comment

The antiepileptic compound carbamazepine (CBZ) is known to crystallize in at least four anhydrous polymorphic forms (Grzesiak *et al.*, 2003) and the crystal structures of several solvates and co-crystals have also been reported (Fleischman *et al.*, 2003). The title solvate, (I), was produced during an automated parallel crystallization polymorph screen on CBZ. The sample was identified as a new form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence *et al.*, 2003). Subsequent manual recrystallization from a saturated *N*,*N*-dimethylformamide (DMF) solution by slow evaporation at 278 K yielded samples suitable for singlecrystal X-ray analysis (Fig. 1).

In the crystal structure of (I), CBZ molecules form the centrosymmetric hydrogen-bonded $R_2^2(8)$ dimer motif observed in all of the known polymorphs and the majority of CBZ solvate crystal structures (Fleischman *et al.*, 2003) (Fig. 2). CBZ also forms a second N-H···O contact to atom O2 of the solvent molecule. Two C-H···O contacts exist between the DMF methyl H atoms (H17C and H18B) and atom O1 of CBZ. Atom O2 of DMF is further involved in a third C-H···O contact with an adjacent DMF molecule, forming a centrosymmetric $R_2^2(10)$ motif (Fig. 2). The CBZ dimers pack back-to-back, forming offset face-to-face hydrophobic interactions between adjacent azepine ring systems (Fig. 3).

Experimental

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved A single-crystal sample of the title compound was recrystallized from DMF solution by slow evaporation at 278 K.

Figure 1

The molecular structure of (I), shown with 50% probability displacement ellipsoids.

Figure 2

Packing diagram illustrating the non-covalent intermolecular network formed by (1) N2-H2B···O1 [N2···O1 = 2.9719 (19)Å O1 in the molecule at 2 - x, -y, 1 - z]; (2) N2-H2A···O2 [N2···O2 = 2.822 (2) Å; O2 in the molecule at 2 - x, 1 - y, 1 - z; (3) C18-H18C···O2 [C18···O = 3.435 (3) Å; C18 in the molecule at 1 + x, y, z]; (4) C18-H18B···O1 [C18···O1 = 3.259 (2) Å; O1 in the molecule at 2-x, -y, 1-z [calculated and illustrated using *PLATON* (Spek, 2003), program version 280604]. These interactions combine to produce three ring motifs: (A) the $R_2^2(8)$ CBZ dimer; (B) an $R_4^2(8)$ motif between CBZ dimers and molecules of DMF and (C) an $R_2^2(10)$ motif connecting DMF molecules in a centrosymmetric dimer configuration.

Crystal data

	7 0
$C_{15}H_{12}N_2O \cdot C_3H_7NO$	Z = Z
$M_r = 309.36$	$D_x = 1.305 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.7118 (4) Å	Cell parameters from 3432
b = 9.1503 (4) Å	reflections
c = 11.6969 (6) Å	$\theta = 2.9-27.0^{\circ}$
$\alpha = 100.192 \ (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 95.379 \ (2)^{\circ}$	T = 123 (2) K
$\gamma = 101.908 \ (3)^{\circ}$	Fragment, colourless
$V = 787.58 (7) \text{ Å}^3$	$0.20 \times 0.20 \times 0.05 \text{ mm}$

Figure 3

Hydrophobic packing interactions between nearest neighbour CBZ molecules with a centroid-centroid distance of 3.801 (1) Å (the carboxamide groups have been omitted for clarity).

 $R_{\rm int} = 0.054$

 $\theta_{\rm max} = 27.2^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -11 \rightarrow 11$

 $l = -14 \rightarrow 14$

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: none 15107 measured reflections 3476 independent reflections 2475 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0505P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+ 0.208P]
$wR(F^2) = 0.117$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.002$
3476 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
230 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Hydrogen-bonding geometry (Å, °).

$D = H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D = H \cdots A$	
		11 /1	DI		
$N2-H2A\cdots O2^{i}$	0.921 (18)	1.963 (19)	2.822 (2)	154.5 (18)	
$N2-H2B\cdotsO1^{ii}$	0.884 (19)	2.103 (19)	2.9719 (19)	167.4 (15)	
$C17 - H17C \cdot \cdot \cdot O1^{ii}$	0.98	2.51	3.373 (3)	147	
$C18 - H18B \cdots O1^{iii}$	0.98	2.43	3.259 (2)	142	
$C18-H18C\cdots O2^{iv}$	0.98	2.49	3.435 (3)	163	

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 2 - x, -y, 1 - z; (iii) 1 - x, -y, 1 - z; (iv) 1 - x, 1 - y, 1 - z.

Five H atoms (H2A, H2B, H8, H9 and H16) were located in difference maps and refined isotropically, but all other H atoms were constrained to idealized geometry using a riding model; for CH₃ groups, $U_{iso}(H) = 1.5U_{eq}(C)$ and C-H = 0.98 Å, while for CH groups, $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ and ${\rm C-H} = 0.95$ Å.

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

We thank the Basic Technology programme of The Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk).

References

- Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930– 1938.
- Grzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260–2271.
- Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.